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Design of yielding metallic and friction dampers for optimal
seismic performance
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SUMMARY

This paper deals with the optimal design of yielding metallic dampers and friction dampers together
as they both have similar design characteristics and parameters. Ample tests and analytical studies
have con�rmed the e�ectiveness of these energy dissipation devices for seismic response control and
protection of building structures. Since these devices are strongly non-linear with several parameters
controlling their behaviour, their current design procedures are usually cumbersome and not optimal.
In this paper, a methodology is presented to determine the optimal design parameters for the devices
installed at di�erent locations in a building for a desired performance objective. For a yielding metallic
damper, the design parameters of interest are the device yield level, device sti�ness, and brace sti�ness.
For a friction device, the parameters are the slip load level and brace sti�ness. Since the devices and
the structures installed with these devices behave in a highly non-linearly manner, and thus must be
evaluated by a step-by-step time history approach, the genetic algorithm is used to obtain the globally
optimal solution. This optimal search approach allows an unusual �exibility in the choice of performance
objectives. For demonstration purposes, several sets of numerical examples of optimal damper designs
with di�erent performance objectives are presented. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

The e�ectiveness of energy dissipation devices, such as yielding metallic dampers and fric-
tion dampers, is now well recognized for reducing the dynamic response of civil structures
exposed to seismic environment. Among the yielding metallic devices, the added damping
and sti�ness (ADAS) [1; 2] and triangular-plate added damping and sti�ness (TADAS) [3]
are quite popular in seismic applications. Similarly, friction dampers with di�erent designs
have been proposed and used in practice [4–7]. These devices can accommodate a large dis-
sipation of energy through yielding of the steel or through friction at the two sliding surfaces.
For a given excitation intensity, the level of force at which the device would yield or slip
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Figure 1. San Fernando earthquake pseudo-acceleration response spectrum for 3% damping.

determines the energy that is likely to be dissipated. Thus, at a low level of excitation a
yielding or friction device may not provide any dissipation of energy. Also, depending upon
where the device is installed in a structure, it may or may not participate in the dissipation
of energy. The determination of the most appropriate yielding level or slip load level at dif-
ferent placement locations in the structure is, thus, an important design issue which must be
resolved for e�ective utilization of these devices in practice. This paper deals with the optimal
selection of the design parameters of yielding metallic and friction damping systems, installed
at di�erent locations in a building structure, to achieve a prescribed performance objective.
The installation of such hysteretic dampers in a structure would render it to behave non-

linearly even if all other structural members were designed to remain linear. Therefore, the
analysis of structures installed with these devices must be done by a step-by-step time history
analysis. To determine the optimal design parameters of these devices with such nonlinear
time history analysis is an involved problem. Perhaps, one can attempt to use a gradient
based optimization scheme to determine optimal design parameters. Such an approach has
been successfully used with linear systems [8]. However, these techniques may lead to a
locally optimal solution near the starting design guess, especially if several such solutions
exist. This can be appreciated by an inspection of a simple acceleration response spectrum
curve depicted in Figure 1 for a ground motion time history. For this simple example of a
single degree of freedom system, if one were to use a gradient-based approach to obtain the
optimum values of the system parameters (say, the system sti�ness and damping ratio within a
practical range) that would minimize the response for this motion, the search procedure would
surely get trapped in one of the valleys near the initial design guess. If the globally optimal
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solution is desired then several randomly selected initial guesses must be used. Moreover,
the additional information required by the search procedure, such as the calculations of the
gradients of the objective functions and constraints can be cumbersome for nonlinear systems.
In addition, the force–deformation relationships of these devices may introduce discontinuities
in the gradient functions depending on the model used to characterize their hysteretic cyclic
behaviour. Therefore, the implementation of these approaches for optimal design with highly
non-linear energy dissipation devices can be a di�cult task.
In this paper, the use of genetic algorithms is advocated for the optimal design of such

highly non-linear devices with hysteretic force deformation characteristics. The formulation
of the optimization-based approach is �rst presented along with a brief description of the
selected optimization technique. The mechanical parameters governing the behaviour of the
devices are then identi�ed. For demonstration purposes, an analytically convenient hysteretic
model is adopted for response calculations of the combined structural system. The approach,
however, can be used with any model. Non-linear step-by-step time history analyses are carried
out for performance evaluations of the system. The optimal numerical results for a number
of alternative performance indices are presented.

PROBLEM DEFINITION

The equations of motion of an N degree of freedom building structure with supplemental
energy dissipation devices subjected to a ground excitations at its base can be written in the
following standard form:

M �u(t) +Csu̇(t) +Ksu(t) +
nl∑
d=1
rdPd(t)=−ME �Xg(t) (1)

where M;Ks and Cs represent, respectively, the N ×N mass, structural sti�ness and inherent
structural damping matrices; �Xg(t) is the seismic excitation; E is the vector of ground motion
in�uence coe�cients; u(t) is the N -dimensional relative displacement vector with respect to
the base, and a dot over a symbol indicates di�erentiation with respect to time. The local
force Pd(t) due to a passive damper installed at the dth location is considered through the
N -dimensional in�uence vector rd, with nl being the number of possible locations for a device
in the structure. A general expression for the passive force Pd applied by an energy dissipation
device considered in this study can be de�ned by a di�erential operator as

Pd[d1; : : : ; dn; hd(t);�d(t); �̇d(t); t]= 0 (2)

where di represents the mechanical parameters characterizing the behaviour of the devices,
hd(t) is an internal variable of the element, and �d(t) the local deformations of the device
element. The local device deformation and the deformations rate �̇d(t) are related to those
of the main structure by

�d(t)= rTdu(t); �̇d(t)= rTd u̇(t) (3)

It is noted that the e�ectiveness of these protective systems in improving the seismic perfor-
mance of a structure is a function of several variables such as their number, their location in
the structure, and their physical parameters. To obtain an acceptable design and arrangement,
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one could start by assuming a reasonable placement pattern for the devices and then vary
their parameters until the structural system meets the performance requirements. However, as
the structure becomes more complex and the number of protective devices increases such an
approach may not be e�cient or practical for design purposes.
In this study, the problem of determining the best design parameters of hysteretic dampers

is posed as an optimization problem. The intent is to fully exploit the energy dissipation
capability of each device while providing the best response reduction. The e�ectiveness of
a given distribution of the devices, and their chosen properties, can be measured in terms
of a properly selected performance function or index. The objective may be to minimize or
maximize such a function. Such a design problem could be expressed in terms of an optimality
criterion as follows:

minimize
d

f[R(d; t)]; t ∈ [0; tf] (4)

subject to gj(d; t)60 j=1; : : : ; m; t ∈ [0; tf] (5)

where R(d; t) is the desired structural response vector in terms of which the performance
function f(−) is de�ned, d is the vector of the design variables representing the parameters
of the added damping elements, and m is the number of inequality constraints gj which may
include the upper and lower bounds on the design variables.
A number of alternate performance indices can be used to evaluate the seismic performance

of a building structure. Depending upon the chosen criteria, di�erent design solutions will be
obtained. Moreover, a design solution obtained by reducing some measure of the structural
response may increase some other response quantities. It is, thus, clear that there is no unique
way of de�ning an optimal problem; the choice depends on the performance objectives. In
this paper, several forms of performance indices are used to demonstrate the optimal design
procedure.
As mentioned earlier, genetic algorithms are quite well suited for solving problems such as

the one stated by Equations (4) and (5). These algorithms are robust search and optimization
techniques. They are based on the principles of natural biological evolution where stronger
individuals are likely to be the winners in a competing environment [9; 10]. Genetic algorithms
explore the design space by operating on a population of potential solutions (designs). The
process tries to simulate the biological evolution by means of random genetic changes that
produce successively better approximations to a design solution. Since many design points are
considered simultaneously in the search space, genetic algorithms have a reduced chance of
converging to local optima. Moreover, they do not require any computations of gradients of
complex functions to guide their search; the only information needed is the response of the
system to calculate the objective or �tness function. This approach has been e�ectively used
in several earlier studies, a few of which are cited here [11–17].

DESIGN PARAMETERS OF HYSTERETIC DEVICES

The force–deformation behaviour of the yielding dampers and friction dampers has some
common characteristics. Therefore, we describe �rst the modelling of metallic devices and then
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specialize it for friction devices. The force–deformation response under arbitrary cyclic loading
of the hysteretic devices has often been approximated by discrete multi-linear models, such as
the elasto-perfectly plastic model and the bilinear model. More comprehensive and accurate
models have also been devised to represent more accurately the constitutive behaviour of
these devices [18]. To facilitate the identi�cation of the parameters involved in the design of a
typical damper, here a simple bi-linear hysteretic force–deformation model is used. Figure 2(a)
represents the bay of a structural frame installed with an added hysteretic damper. Herein,
the combination of a damper and the brace members that support the device is called as the
device–brace assembly. The design parameters of interest of such an assembly are the yield
displacement and sti�ness of the device, and the sti�ness of the brace on which the device is
supported. For a given sti�ness of the building storey where the device is installed, the yield
force Py can be related to the device parameters as follows [19; 20]:

Py = kd�yd =SRks

(
1 +

1
B=D

)
�yd (6)

where ks is the storey sti�ness, �yd is the yield displacement, B=D= kb=kd is the ratio of the
brace sti�ness kb to the device sti�ness kd, and SR= kbd=ks is the ratio of the assembly sti�ness
kbd to storey sti�ness ks. The combined sti�ness of device–brace assembly, schematically
shown in Figure 2(b) and 2(c), can be expressed in terms of the device sti�ness kd and the
bracing sti�ness kb as

kbd =
1

(1=kb) + (1=kd)
=

kd
1 + (1=(B=D))

(7)

In this study, it is assumed that the bracing members as well as the main structural members
are designed to remain elastic during an earthquake, and the sti�ness coe�cient kd of the
device used in Equation (7) corresponds to the initial elastic values of the yielding elements.
Equation (6) expresses the basic relationship between the parameters of the assumed bilinear

model. From this equation, it can be observed that in a given structure (i.e. ks known) the
behaviour of a hysteretic element is governed by the four key parameters: the yield load
Py, the yield displacement of the device �yd, and the sti�ness ratios SR and B/D. However,
only three of these variables are independent since the fourth one can be determined from
Equation (6).
A relationship similar to Equation (6) can also be developed for friction dampers. For these

dampers, the sti�ness kd of the device can be considered as in�nitely large, i.e. kd ≈∞ for a
classical hysteresis loop of the friction dampers (See Figure 3(a)). With this, the sti�ness kbd
of the device assemblage becomes the same as the sti�ness kb of the supporting brace. That
is,

kbd = kb; SR=
kb
ks

(8)

As shown in Figure 3(b), the yield or slip load can then be related to the deformation �y

experienced by the device–brace assembly as

Ps = kbd �y = kb �y (9)
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Figure 2. Yielding metallic damper, (a) typical con�guration, (b) yielding metallic device, bracing and
yielding element parameters, (c) sti�ness properties of device-bracing assembly.

For design purposes, this equation can be expressed in terms of the sti�ness parameter SR
using Equation (8) in Equation (9) as

Ps =SRks �y (10)

Copyright ? 2003 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2003; 32:1291–1311



OPTIMAL DESIGN OF YIELDING METALLIC AND FRICTION DAMPERS 1297

 

Ps

∆ 

Ps

(a) 

Friction Device Bracing

kb
1

 b

fb

kb

 y

Ps

 s

Ps

Friction Element

 d

1

Friction Device Bracing

kb
1

∆ b

fb

kb

∆ 

Ps

∆ s

Ps

Friction Element

∆ d

1

(b)

Figure 3. Idealized hysteretic behavior of friction dampers, (a) friction device on rigid bracing, (b)
friction device mounted on �exible support.

Equation (10) is the basic expression relating the mechanical parameters of a friction element.
From this, it is noted that the behaviour of a friction element is governed by the slip load Ps,
the sti�ness ratio SR, and the displacement of the brace �y at which the device starts to slip.
However, only two of these variables are independent since the third one can be determined
from Equation (10).

HYSTERETIC MODELS AND SYSTEM EQUATIONS

A bilinear model was considered in the above discussion, primarily to facilitate the identi-
�cation of the basic design variables and relationship between them. Models that are more
comprehensive have also been proposed [18] that accurately capture the subtleties of the
force deformation characteristics. They certainly can be used with the formulation and the op-
timization approach to be used herein, with additional numerical e�ort. When performing time
history analyses, however, the numerical complications may arise even in simpler bi-linear
models due to the sharp transitions from the inelastic to elastic states during the loading,
unloading, and reloading cycles. The presence of such abrupt changes in sti�ness requires
the use of numerical procedures that can locate these transition points in order to avoid erro-
neous results. As the number of devices installed in a building structure increases and as the
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di�erent phase or sti�ness transition conditions for each device must be taken into account
in the numerical calculations, the bilinear representation of the devices can become computa-
tionally ine�cient. Herein, therefore, to simplify the computations in this study a continuous
Bouc–Wen’s model [21] is used to characterize the hysteretic force–deformation characteristic
of the dampers. It is realized that this model has its shortcomings, but it still o�ers a prac-
tically convenient representation of the force–deformation characteristics which captures the
essence of the hysteretic behaviour. An especially attractive feature of the Bouc–Wen’s model
is that the same equation governs the behaviour in the di�erent stages of the inelastic cyclic
response of the device. Moreover, since this model is in the form of a di�erential equation,
it can be conveniently coupled with the equations that describe the motion of the building
structure.
In this model, the restoring force, Pd(t), developed in the dth device–brace assembly is

expressed by the following equations:

Pd(t)=SRdkds [��d(t) + (1− �)�d
y hd(t)] (11)

�dyḣd(t)− �̇d(t) + �|�̇d|hd(t)|hd(t)|�−1 + ��̇d|hd(t)|�=0 (12)

where, hd(t) is a dimensionless auxiliary variable that has hysteretic characteristics; �d
y is the

yielding displacement of the dth device–brace assembly, kds denotes the sti�ness of the storey
in which the element is located, and �; �; � and � are the model parameters. These values
must be chosen to calibrate the predicted response of the hysteretic element with the one
obtained experimentally. Figure 4 shows the hysteresis loops generated by the Bouc–Wen’s
model for exponent values of �=1; 5 and 25 when subjected to a sinusoidal excitation. The
values of �=0:02; �=25; �=0:1, and �=0:9 have been selected in this study to characterize
the hysteretic behaviour of the metallic device–brace assembly.
Expressions (11) and (12) for the element forces, when combined with the equations of

motion (1), can be rewritten as a set of �rst-order di�erential equations of the following form:

�x(t)

ẋ(t)

ḣ(t)


 = g[x(t); ẋ(t); h(t); �Xg(t); t] (13)

The di�erential equation (13) constitutes a set of three coupled non-linear di�erential equa-
tions. In their explicit forms, these equations are as follows:

�x(t) =−M−1
[
Csẋ(t) +

(
Ks + �

nl∑
d=1
rd SRdkds r

T
d

)
x(t) + (1− �)

nl∑
d=1
rdSRdkds �

d
yhd(t)

]

−E �Xg(t)
ẋ(t)= ẋ(t)

ḣd(t)=
1
�d
y
[rTd ẋ(t)− �|rTd ẋ(t)|hd(t)|hd(t)|�−1 − �rTd ẋ(t)|hd(t)|�]; d=1; : : : ; nl (14)

These equations can be integrated using several accurate and e�cient solvers.
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Figure 4. Hysteresis loops generated by the Bouc–Wen’s model under sinusoidal excitation, (a) exponent
values �=1; 5 and 25 (�=0:9; �=0:1; �=0:05; H=1; �y =0:005 m), (b) model used in this study

(�=25; �=0:9; �=0:1; �=0:02; H=1).

The hysteretic behaviour of the friction element can also be e�ectively represented by a con-
tinuous Bouc–Wen’s model. Recognizing the absence of any post-yielding or strain-hardening
e�ect, the force Pd(t) developed in a friction element can be obtained from Equation (11) in
terms of the slip load at the element Pds and the hysteretic variable hd(t) as

Pd(t)=Pds hd(t) (15)

Pds ḣd(t)− SRdkds [�̇d(t)− �|�̇d|hd(t)|hd(t)|�−1 − ��̇d|hd(t)|�]= 0 (16)

As before, the model parameters �; � and � are adjusted to approximate the shape of the
hysteresis loops. A value of �=2; �+�=(�=0:1; �=0:9) have been proposed in the litera-
ture to produce hysteresis loops of friction force versus sliding displacement that are in good
agreement with experimental results [22]. For these parameters values, Figure 5(a) shows the
hysteresis loop generated by the Bouc–Wen’s model for di�erent combinations of excitation
frequencies and amplitudes. If the �exibility of the bracing is included in the analysis, the
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Figure 5. Hysteresis loops for the Bouc–Wen’s model under sinusoidal excitation for di�erent values of
excitation frequencies and deformation amplitudes, (a) rigid bracings, (�=0:9; �=0:1; �=2; H =1),

(b) �exible bracings (�=0:9; �=0:1; �=25; H =1).

hysteretic loop of the friction assemblage is better approximated by using an exponent coef-
�cient �=25, as shown in Figure 5(b).
Equations (15) and (16) along with the equations of motion can be written as a system of

the �rst order equations (13). The three equations represented by (13) for the friction dampers
are as follows:

�x(t)=−M−1
[
Csẋ(t) +Ksx(t) +

nl∑
d=1
rdPds hd(t)

]
− E �Xg(t)

ẋ(t)= ẋ(t)

ḣd(t)=
SRd kds
Pds

[rTd ẋ(t)− �|rTd ẋ(t)| hd(t)|hd(t)|�−1 − �rTd ẋ(t)|hd(t)|�]; d=1; : : : ; nl (17)
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The sets of Equations (14) and (17) have been used in the optimization study to obtain the
following numerical results. In this study, these equations have been solved using the equation
solver LSODA from the ODEPACK package [23].

NUMERICAL RESULTS

The numerical results are obtained for a 10-storey shear building, installed with the two types
of hysteretic dampers under consideration herein. The storey sti�ness varies from bottom to
top with values, in the N=m× 107 units, as: 9.26, 8.57, 7.88, 7.20, 6.51, 5.83, 5.14, 4.45, 3.77,
and 3.08. The mass of each �oor is 2:5× 105 kg. The damping ratio of 3% in each mode
was assumed to de�ne the inherent energy dissipation characteristics of the structure. This
damping ratio value was used to construct the damping matrix for the structure. It is assumed
that there will be one device in each storey. The mechanical properties of each device can
be changed independently, and will be determined by the optimization procedure. First, the
results are presented for the metallic dampers followed by the results for the friction dampers.

Metallic dampers: The optimal values for the damper parameters will depend upon the choice
of the desired objectives. The objective may be as simple as to reduce a single response
quantity such as the base shear or acceleration of a �oor. It could be also de�ned in terms
of a composite index as a function of several response quantities. For illustration purposes,
here the following performance indices have been considered for the metallic devices:

f1[R(d; t)] =
1
2

{
maxi�i(t)
maxi�i(o)(t)

+
maxi[ �Xoi(t)]
maxi[ �Xoi(t)]

}
(18)

f2 =
nf∑
i=1
max[ �X

2
oi(t)]=

nf∑
i=1
max[ �X

2
oi(t)] (19)

The index f1 is expressed in terms of the maximum inter-storey drift and maximum �oor
acceleration, weighted equally. The index is expressed in a non-dimensional form using the
response quantities of the original structure by using the dampers. The objective is to minimize
this function by a balanced reduction of the both response quantities. The second index is
expressed as the ratio of the sum of the squares of the absolute �oor accelerations of the
damped and undamped (original) structures. The objective of minimizing this function would
be to reduce the �oor accelerations.
As mentioned earlier, there are three independent parameters according to Equation (6)

that need to be calculated for optimal usage of the metallic dampers. Herein, the sti�ness
ratio SR, yield level �y, and sti�ness ratio B/D are chosen as the design parameters or the
design variables of interest. Since the genetic algorithms operate in the discrete design space,
the design variables have to be discretized. Herein, for this, the parameter SR is considered
to take on any integer value between 0 to 10. Thus, there are 11 possible choices for this
variable. The value of zero corresponds to the case of no-device in the storey. The parameter
B/D is also considered to take on any of the 10 possible integer values varying between 1
to 10. Based on experimental observations and suggested guidelines [19; 20], the admissible
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Table I. Optimal parameters of metallic devices for the performance index F1 of Equation (18) with
di�erent design options.

SR SR and �yd SR, �yd and B/D

Storey SRd Pdy �yd SRd Pdy �yd SRd B=Dd Pdy
(%W ) (m) (%W ) (m) (%W )

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 1.50 4.2 0.0057 1.50 4.9 0.0070 2.00 8.25 5.9
2 2.75 7.2 0.0060 3.50 11.1 0.0057 4.50 5.00 10.9
3 8.50 20.5 0.0051 5.50 13.5 0.0060 7.00 6.50 15.7
4 3.00 6.6 0.0054 7.00 16.6 0.0054 4.75 5.75 8.9
5 2.25 4.5 0.0056 3.75 8.4 0.0054 4.25 9.75 6.7
6 4.50 8.0 0.0058 3.75 7.8 0.0051 3.50 8.50 4.8
7 2.50 3.9 0.0055 5.00 8.7 0.0050 3.00 4.25 3.9
8 4.75 6.5 0.0051 6.75 9.3 0.0054 4.25 6.50 4.8
9 5.50 6.3 0.0054 6.50 8.1 0.0054 4.50 5.75 4.4
10 1.66 1.6 0.0052 3.40 3.3 0.0059 5.38 3.25 5.2

f[R(d∗; t)] 0.68 0.62 0.57

Table II. Optimal parameters of metallic devices for the performance index F2 of Equation (19) with
di�erent design options.

SR SR and �yd SR, �yd and B/D

Storey SRd Pdy �yd SRd Pdy �yd SRd B=Dd Pdy
(%W ) (m) (%W ) (m) (%W )

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 1.00 2.8 0.0054 1.00 3.0 0.0055 1.00 5.25 2.4
2 5.50 14.4 0.0058 7.75 23.4 0.0067 6.00 3.25 18.2
3 9.75 23.5 0.0055 9.75 26.0 0.0051 8.00 6.75 15.0
4 6.25 13.8 0.0061 7.25 19.6 0.0066 4.00 5.00 9.3
5 6.50 12.9 0.0058 4.75 10.9 0.0061 1.75 6.00 3.3
6 2.50 4.5 0.0050 3.50 6.2 0.0058 4.25 7.75 6.6
7 5.00 7.9 0.0067 3.50 7.3 0.0053 5.75 5.50 7.6
8 7.50 10.2 0.0064 7.75 13.6 0.0052 5.00 3.75 5.9
9 5.00 5.8 0.0057 7.25 9.5 0.0053 5.75 4.75 5.7
10 0.91 0.9 0.0063 3.90 4.6 0.0050 2.14 6.75 1.5

f[R(d∗; t)] 0.70 0.68 0.63

values for the device yield level have been considered to vary between 0.005 to 0:008m. This
range has been divided into 10 equal intervals, thus providing 11 choices for this variable.
Thus, for 10 possible locations of these devices on the structure, there are more than zillion
possible combinations in the design space that an exhaustive search will have to explore.
The genetic algorithms, however, do it very e�ciently without examining each and every
possibility.
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The optimal parameter values obtained by genetic algorithm for the two performance indices
f1 and f2 are shown in Tables I and II, respectively. The parameter values shown in the tables
are the average of the values obtained for four synthetically generated accelerrograms. The
synthetic accelerograms were generated for a Kanai–Tajimi spectral density function that was
consistent with the 1994 Northridge Earthquake event [24]. The acceleration time histories
were normalized to a maximum ground acceleration value of 0:45g. For the results in Columns
2 and 3, only the parameter of the sti�ness ratio SR was considered to be an independent
variable; the parameters of the yield level �y and B/D were �xed at �y =0:005 m and
B=D=2. Column 2 shows the calculated optimal sti�ness ratio values SR and Column 3
the corresponding yield load calculated according to Equation (6). The last row of the table
shows the performance index value of 0.68, indicating a reduction in the response of about
32%. The results in the next three columns (Columns 4–6) of the table are for the two
parameters of SR and �y chosen as the independent variables. The parameter B/D was �xed
at a value of 2. The results in the last four columns (Columns 7–10) are for the case when all
three parameters have been considered as variables. It is noted that the optimal distributions
of the parameters in di�erent stories of the building in the three cases are di�erent. Also,
the optimal values of the performance indices shown in the last row of the table indicate a
continued improvement in the performance for the three cases. This improved performance
can be obviously attributed to the increased �exibility gained in the design by considering
more parameters as variables. Similar results were also obtained for the second performance
f2, as shown in Table II, with analogous observations.
To compare the e�ectiveness of the above designs based on the two performance indices

in reducing other response quantities such as �oor accelerations and storey shears we present
Figure 6. Here we plot and compare the response values calculated for the designs with
parameters given in the last four columns of Tables I and II. Also plotted are the response
values for the original structure with no dissipation devices. Figure 6(a) is for acceleration
response and Figure 6(b) for the storey shear responses. It is noted that the design for index
f2 is somewhat more e�ective in reducing the acceleration than the design for index f1 as
the former index is entirely based on the �oor acceleration.

Friction dampers: Next, we present the numerical results for the optimal designs obtained for
the structure installed with friction dampers. As mentioned earlier, we have three parameters
in this case that are related through Equation (10). Only two of them can be chosen as
independent variables. In the following, we select the parameters of the slip-load Ps and
sti�ness ratio SR as the two independent variables. Again, it is assumed that a single device is
placed at each location. The mechanical properties of the friction elements are then determined
using genetic algorithm for a speci�ed performance index. The same 10-storey shear building
and seismic motions used for the metallic dampers are used again with friction dampers.
A number of simpli�ed procedures and design guidelines have been proposed in the liter-

ature for the determination of these parameters. In general, these design methodologies are
based on the results of extensive parametric analysis [25–30]. The studies by Filiatrault and
Cherry [28; 29] and Cherry and Filiatrault [30] are especially relevant. They obtained a design
for a performance index, assuming that all the friction devices placed at di�erent building lo-
cations slipped at the same threshold load Pds =Ps. Also, the same diagonal braces were used
in each storey to support the devices. Under these assumptions, the design problem reduced
to the determination of a single parameter—the slip-load Ps for the devices. They used an
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Figure 6. Comparison of maximum response quantities along the building height,
(a) �oor accelerations, (b) storey shears.

index called as the relative performance index (RPI) de�ned as follows:

RPI=
1
2

(
SEA
SEA(o)

+
Umax
Umax(o)

)
(20)

where SEA and Umax are, respectively, the area under the elastic strain-energy time history
and the maximum strain energy for a friction-damped structure; SEA(o) and Umax(o) are the

Copyright ? 2003 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2003; 32:1291–1311



OPTIMAL DESIGN OF YIELDING METALLIC AND FRICTION DAMPERS 1305

Table III. Optimal parameters of friction devices for di�erent design options with performance
index of Equation (20).

Uniform Slip Load Variable Slip Load Slip load Pds and SRd ratios

Storey Ps Pds Pds SRd
(%W ) (%W ) (%W )

(1) (2) (3) (4) (5)

1 3.25 5.30 5.9 9.75
2 3.25 4.50 4.9 9.25
3 3.25 3.80 4.6 8.75
4 3.25 3.60 3.8 7.25
5 3.25 3.00 3.4 9.50
6 3.25 2.40 2.9 9.25
7 3.25 2.40 2.5 9.50
8 3.25 2.10 2.1 9.00
9 3.25 2.10 1.5 9.00
10 3.25 3.40 1.0 8.00

RPI 0.2681 0.2347 0.1060

respective quantities of the original uncontrolled structure. The selection of this performance
index was motivated by the direct relation that exists between the amount of elastic strain
energy imparted into a building and the resulting structural response. For this simple case,
Filiatrault and Cherry [29] determined the optimal slip load by a direct parametric variation
analysis. A series of time-history analyses were carried out for di�erent levels of slip-load.
The value of Ps that minimized the RPI de�ned the optimum design parameter in the study.
Using this approach with the 10-storey structure and ground motions considered in this

study, the optimal slip load for the sti�ness ratio SR=2 was calculated to be 0:0325W . W
is the total weight of the structure. The same optimal value was also obtained by the genetic
algorithm. The corresponding RPI index was 0.2681. These results are shown in Column (2)
of Table III. The design corresponding to these results will be referred to as Case I design
in further discussions.
In the second case, the optimal design problem was again solved but now considering

the slip-loads at each location as independent variables, denoted here as Pds . That is, the
assumption of uniform slip-load distribution over the storey height is removed. The genetic
algorithm was used to �nd the optimal slip load parameters in di�erent stories that minimized
the RPI. For using the genetic algorithm, the 26 possible slip load values between 0 and
0:125W at the intervals of 0:005W were considered. A value of zero for the slip load at
a location means no device at the location. To compare the results for this case with the
results for Case I (as well as for Case III to be discussed next), a constraint was imposed
that the sum of all the slip loads at di�erent levels in the building remain the same in the
three cases. The total slip load in Case I is calculated to be 32.5% of the total weight (sum
of the slip loads in Column 2, Table III). Thus, the total slip load in the other two cases
was also constrained to be equal to this value. Column (3) of Table III presents the average
slip-load distribution obtained using the genetic algorithm. These results have been obtained
for a population of 20 individuals evolving over 500 generations. It can be noticed from the
last row of Table III that for the same amount of total friction force, this optimal slip-load
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distribution further reduces the RPI value by about 13%. Thus, it helped to use di�erent slip
loads at di�erent levels. The design corresponding to the values in Column 3 will be referred
to as Case II design.
In Case III, in addition to the parameter of the slip loads at di�erent stories, the sti�ness

ration parameter SRd is also set free to take any integer value between 1 and 10. Again, the
genetic algorithm is used to search for the best design solution. Since the number of possible
design combinations has increased, a larger population of 30 individuals has been considered
for the numerical calculations. Columns 4 and 5, respectively, show, the values of the slip
loads Pds and sti�ness ratios SRd for each storey. The total friction load in the three cases is
kept the same for a comparison of the results in these cases. It is noted that the RPI index
is further reduced by 60%. Such dramatic improvement in the seismic performance of the
structural system can be attributed to the additional sti�ness used in the optimal design as
well as to a better utilization of their energy dissipation capabilities.
Figure 7 compares the force–deformation responses of the friction elements located at dif-

ferent building stories when the structure is subjected to the San Fernando earthquake. The
results for Case I (for the uniform slip-load distribution) are shown in Figure 7(a). It is
observed that the devices located at the upper stories are not slipping and consequently do
not extract any energy from the system. Figure 7(b) shows the hysteresis loops for the Case
III design (Columns 4 and 5 of Table III.) It is observed that in this case, all the friction
elements are actively engaged in the energy dissipation.
Figure 8 compares the response reduction achieved by the Cases I and III designs in the

maximum inter-storey drifts, displacements, and absolute �oor accelerations. These response
quantities are the average of the responses obtained for the simulated acceleration records. The
Case III design is seen to be more e�ective than the Case I design in reducing the drift and
displacement response. Case III is also more e�ective in reducing the top �oor acceleration.
However, the acceleration response is not much a�ected at the lower stories. Acceleration
reduction can be improved by using a performance index that includes acceleration explicitly,
such as the one used for yielding metallic damper, Equations (19) or (18). Table IV shows
the optimal values of the two design variables, obtained by the genetic algorithm, for the per-
formance index of Equation (18). For this design solution, Figure 9 compares the maximum
inter-storey drifts, maximum displacements and maximum absolute accelerations values ob-
tained at di�erent stories of the original and friction-damped structures. Again, these responses
are the average of the responses obtained for the ground motions used. This �gure also shows
the corresponding maximum responses obtained for the Case III design of the structure in
Table III obtained for the RPI index. These responses quantities were previously presented in
Figure 8. It seen from Figure 9 that the design solution obtained by minimizing the perfor-
mance index of Equation (18) provides comparable reductions in the maximum inter-storey
drifts and displacements, but better reductions in the maximum accelerations responses at all
levels. Figure 10 shows the evolution of the best design in successive generations and the
convergence characteristics of the genetic algorithm used in this study.

CONCLUDING REMARKS

The metallic and friction dampers can dissipate a large portion of energy in a vibration system
through hysteretic cycles. They, therefore, o�er attractive choices for seismic response

Copyright ? 2003 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2003; 32:1291–1311



OPTIMAL DESIGN OF YIELDING METALLIC AND FRICTION DAMPERS 1307

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

-0.01 -0.005 0 0.005 0.01
-2E+06

-1E+06

0

1E+06

2E+06

Inter-story drift [m]

Fr
ct

io
n 

el
em

en
ts

 f
or

ce
s 

[N
]

(a) (b)

Floor 1 

Floor 3 

Floor 8 

Floor 10

0

6

01

0

-2

0

6

Inter-story drift [m]

Figure 7. Comparison of force–deformation responses for friction elements obtained
for the San Fernando earthquake, (a) uniform slip-load distribution, Case I, (b) genetic

algorithm slip-load distribution, Case III.

Copyright ? 2003 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2003; 32:1291–1311



1308 L. M. MORESCHI AND M. P. SINGH

0 0.1 0.2 0.3
1

2

3

4

5

6

7

8

9

10

0 0.01 0.02 0.03 0.04
1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

10

Drifts [m Displacements [m] Accelerations [m/s 2 ]

Uncontrolled response

Case I

Case III

0 0.1 0.2 0.3
1

2

3

4

5

6

7

8

9

10

0 0.01 0.02 0.03 0.04
1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

10

Drifts [m] [m] Accelerations [m/s

Uncontrolled response

Case I

Case III

F
lo

or
 N

o.

Figure 8. Comparison of maximum response quantities along the building height for the damper
parameters presented in Table III for RPI index (Equation (20)).

Table IV. Optimal parameters of friction devices for the performance index of
equation (18).

Slip load Pds and SRd

Storey SRd Pds
(%W )

(1) (4) (5)

1 5.50 3.5
2 3.00 3.8
3 7.25 4.3
4 7.25 4.5
5 7.50 2.5
6 6.25 2.5
7 6.00 3.5
8 4.75 3.8
9 7.75 2.8
10 5.50 2.5

f[R(d∗; t)] 0.4617

mitigation of structural systems. To evaluate the performance of a structural system installed
with these devices for seismic motions, one must use a step-by-step time history analysis since
these devices introduce strong non-linearities in the system. Because of this non-linearity,
it is quite di�cult to calculate the right design parameters of these complex systems for
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a structural design. This study shows the design procedures of these two devices have similar
characteristics. For a give structural system, the design parameters of interest for a metallic
damper are the yield displacement of the device, sti�ness of the device, and sti�ness of the
bracing that supports the device. For a friction damper, the design parameters are the slip-load
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level and bracing sti�ness. A method using the genetic algorithms is used to calculate the
optimum choices for these parameters to satisfy a pre-selected design objective. It is shown
that the possibility of varying these parameters independently of each other and at di�erent
locations of their installation in a structure provides a very desirable �exibility in the design
to improve the performance. The performance objectives are de�ned in terms of performance
functions or indices. The genetic approach o�ers a unusual �exibility in choosing di�erent per-
formance indices. Several sets of numerical results with a few di�erent forms of performance
indices are presented to demonstrate the application of the approach for selecting optimal
design parameters of these complex energy dissipation systems.
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